Borsodi, A.K., Knáb, M., Krett, G., Makk, J., Márialigeti, K., Erőss A., Mádl-Szőnyi J. 2012. Biofilm bacterial communities inhabiting the cave walls of the Buda Thermal Karst System, Hungary. Geomicrobiology Journal, 29 (7), 611-627.

The diversity of biofilm bacterial communities associated with cave walls of the Buda Thermal Karst System (BTKS) located in Hungary was studied by scanning electron microscopy and molecular cloning based on 16S rRNA genes. Samples from two sites, the Molnár János cave (MJB) and the Rudas-Török spring cave (RTB), respectively, were analyzed and compared. The presence of iron precipitates was typical at both study sites, despite the fact that the cell morphological structure of the biofilms observed by SEM was characteristically different. Clones analyzed from BTKS were found to belong to 10 common phyla (Thermodesulfobacteria, Chloroflexi, Nitrospirae, Chlorobi, Proteobacteria, Firmicutes, Actinobacteria, Planctomycetes, Bacteroidetes, Verrucomicrobia) within the domain Bacteria. Moreover, sequences related to Aquificeae, Acidobacteria and Gemmatimonadetes were exclusive to MJB, while Cyanobacteria were found in RTB only. The phylogenetic distribution of the dominant bacterial clones was quite dissimilar between the two sites. In the biofilm from MJB clones affiliated with Firmicutes, whereas in the RTB clones related to Deltaproteobacteria were found in the highest number. In addition, substantially larger numbers of clone sequences related to thermophilic bacteria were recovered from MJB. On the basis of sequences of known microorganisms corresponding to our clone sequences, it is assumed that aerobic as well as anaerobic iron and sulfur transformation performed by different bacterial communitiesmight be important biogenic processes in both caves.

Impact factor: